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AERONAUTIC SYMBOLS

1. FUNDAMENTAL AND DERIVED UNITS

Metric English
Symbol
. Abbrevia-~ ; Abbrevia-
Unit tion Unit tion
Length . __._ 1 meber___________.___._. m foot (ormile) . _______ £, {or mi.)
Time_.______ 13 second_ ___________.____ s seeond {or hour)_______ sec. (or hr.)
Force__._____ F weight of 1 kilogram_____ kg weight of 1 pound_____ 1b.
Power__._.___ P horsepower (metric). ... __.____ horsepower_ __________ hp.
kilometers per hour__.___ k.p.h miles per hour_ . ______ m.p.h.
Speed_______ Vv :
meters per second._ .. ____ m.p.s. | feet persecond._______ f.p.s.
2. GENERAL SYMBOLS
Weight=mg ) ) © o, Kinematic viscosity
Standgrd acceleration of gravity=9.80665 »p, Density (mass per unit volume)
m/s* or 32.1740 ft./sec.? Standard density of dry air, 0.12457 kg-m™-s® at
Mass=—r 15° . and 760 mm; or 0.002378 1b.-{t.~* sec.?

Moment of inertia=mk®. (Indicate axis of
radius of gyration & by proper subseript.)
Coeflicient of viscosity

Area

Area of wing
Gap

Span

Chord

Aspect ratio
True air speed

Dynamic pmssurez% pV?
Lift, absolute coefficient C’L=-g%
Drag, absolute coefficient C =£§

Profile drag, absolute coefficient 0D0=§D§

Induced drag, absolute coefficient C) i=%

Parasite drag, absolute coefficient C’Dp=§§

Cross-wind force, absolute coeflicient O’c=g—%

Resultant force
g

Specific weight of “standard” air, 1.2255 kg/m® or
0.07651 1b./cu. ft.

'iw,

g

@
1/

b
"

a,

Oy
O(i,

Ys

3. AERODYNAMIC SYMBOLS

Angle of setting of wings (relative to thrust
line)

Angle of stabilizer setting (relative to thrust
line)

Resultant moment

Resultant angular velocity

Reynolds Number, where [ is a lincar dimension
(e.g., for a model airfoil 3 in. chord, 100
m.p.h. normal pressure at 15° C., the cor-

responding number is 234,000; or for a model
of 10 e¢m chord, 40 m.p.s., the corresponding
number is 274,000)

Center-of-pressure coefficient (ratio of distance
of c.p. from leading edge to chord length)

Angle of attack

Angle of downwash

Angle of attack, infinite aspect ratio

Angle of attack, induced

Angle of attack, absolute (measured from zero-
1ift position)

Flight-path angle
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STRESS ANALYSIS OF BEAMS WITH SHEAR DEFORMATION OF THE FLANGES

By Pavr Kuan

SUMMARY

The fundamental action of shear deformation of the
fanges is discussed on the basis of simplifying assumptions.
The theory is developed to the point of giving analytical
solutions for simple cases of beams and of skin-stringer
parels under axial load. Strain-gage tests on a tension
panel and on a beam corresponding to these simple cases
are described and the results are compared with analytical
results.  For wing beams, an approximate method of
applying the theory is giwven. As an alfernative, the
construction of a mechanical analyzer 1s advocated.

INTRODUCTION

The so-called “semimonocoque” type of construction,
which has been favored by aircraft designers for some
time, presents serious difficulties in stress analysis.
Static tests have proved that the bending action of such
a structure is not always described with sufficient
aceuracy by the standard engineering formulas based
on the assumption that plane cross sections remain
plane. It will be necessary, therefore, to devise new
working theories for the action of semimonocoque beams
under bending loads.

In order to arrive at reasonably rapid methods of
stress analysis, it is necessary to make rather sweeping
assumptions. It is obvious that the range of applica-
bility of any such method is limited. The present
paper concerns itself with beams typical in general
form of one class of beams used in airplane construction,
that is, with fairly shallow, wide beams, having flat covers,
symmetrical about the center line, with two shear webs and
with bulkheads that offer no appreciable resistance to
deformation out of their planes.

Briefly, the action of such a beam under loads applied
at the shear webs is as follows: The transverse shear is
taken up by the shear webs. The flanges attached to
these shear webs furnish part of the longitudinal stresses
required to balance the external bending moment.
The strains set up by these stresses induce shear stresses
in the skin which, in turn, cause longitudinal stresses in
the intermediate stringers attached to the skin until
sufficient longitudinal stresses exist at any section to
balance the external bending moment.

If the skin between stringers did not deform under
the action of the shear stresses, the standard beam
formulas would apply. The thin sheet, however, has

very little shear stiffness and suffers large deformations
under load. As a result, the first intermediate stringer
next to a shear web carries a smaller stress than the
flange of the shear web, the next intermediate stringer
carries less stress than the first one, and so on to the
center stringer, which carries the smallest stress. This
phenomenon of the interdependence between stringer
stresses and shear deformations forms the subject of
the present paper.

Apparently Dr. Younger was the first person in this
country to give serious attention to this subject. In
reference 1 he gives a formula for the efficiency of a box
beam with walls of uniform thickness, which may be
considered as the limiting case of very many extremely
small stringers. Nothing more on the subject was
published until two experimental studies appeared in
1936. Reference 2, dealing with the case of a skin-
stringer panel in edge compression, includes a theoretical
solution for a particular case. Reference 3 deals with a
box beam in pure bending, a problem identical with the
one treated in reference 2. In both studies the stringer
stresses experimentally obtained were used to compute
efficiency factors for the shear stiffness of the sheet.

The most important practical problem is the inverse
of the problem dealt with in references 2 and 3; namely,
given the shear stiffness, to calculate the stringer
stresses. The problem is difficult and complex. In
order to arrive at any solution, it has been necessary to
use a very much simplified concept of the action of the
structure, as suggested in references 1 and 2. On the
basis of this simplified concept, the analytical solutions
for a few very simple cases of axially loaded panels and
of beams are derived in this paper. For other cases,
it will be shown that a trial-and-error method of solution
is feasible.

The analytical solutions as well as the trial-and-error
method apply only to very elementary cases, namely,
to three-stringer panels under axial load and to beams
with a single longitudinal stringer attached at the
center line of the cover sheet. It has been considered
worth while to devote considerable space to the dis-
cussion of these elementary cases for the following
reasons:

1. The study of these simple cases greatly facilitates
the understanding of the fundamental principles. (It
is very strongly urged that anyone desiring to use the

1
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The condition of a pure diagonal-tension field is not
reached, however, until the buckling shear stress has
been considerably ex-
ceeded. Consequently,

Q" I values intermediate be-

7 =T tween G and %G will

occur at stresses not

p p too greatly in excess of

) the buckling stress (i. e.,
3 to 5 times), provided
that the edge members

T ] ] 36 are sufficiently stiff. 1f
—11 —6- j 61> the edge members are
| | | not sufficiently stiff or
o, o, - well braced to take the
% 1% 1% transverse component of
the diagonal tension and
o : s v B particularly if the sheet
carries edge compression
P in addition to shear, the
% steel .
[ Zhiate jig  shear stiffness may drop
op to very low values.
%xI% durdl 006 qurol sheet Values as low as (.=
A TP | 0.1G have been reported
I (reference 3); although
Section A-A

the numerical accuracy
of this particular anal-
ysis has been questioned, it serves at least as a useful indi-
cation of what may be expected, remembering that this
test was stopped long before

FIGURE 5.-—Test panel.
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von Kdrman’s formula for effective width was used

in the form B
2= 1.9\/Et
g

where w is the effective width (on one side of the
stringer) and o the stress in the stringer. This formula
is probably always conservative in the range in
question.

COMPARISON BETWEEN TEST AND CALCULATED RESULTS

In order to check the validity of the method thus far
developed, a test specimen was built to represent a
structure corresponding to figure 1 (a). A sketch of the
actual test specimen is shown in figure 5. Pin-end steel
bars (not shown in the figure) spaced 3 inches apart
were used to separate the edge stringers from the cen-
tral stringer and to take up the transverse component
of the diagonal-tension field that developed under load.
In each bay between these bars, the strains in the
stringers were measured with 2-inch Tuckerman strain
gages on both sides of the specimen. This precaution
proved necessary because the stresses on the two sides
differed so much at some stations that readings on only
one side would have been almost useless.

The load was increased from zero to the maximum
of 4,800 pounds in five steps. With a very few minor
exceptions, the points for any one gage fell on straight
lines. For each station, the results obtained on the
front and the back of the specimen were averaged and
the average values are plotted in figure 6.

. . T ’
reaching the ultimate load. ¢ 6.000 w o Stress in edge stringer (experimerttal)
Quantitative information on & x o 'e”’r”/ ' !
this subject is scarce. Fortu- T =] 4 ] i
X . o=~
nately, as will be shown later, Q4000 S B
3 i 57 ° 7 ° Jo o1 1T [ |
the shear stiffness need not be = LT E=/04xI0° |
very accurately known to obtain 3 == ‘ \ a L
reasonable accuracy in the 2000 »
5 accuracy in the 5 T T olkculated, 6,-6 \
stringer stresses. S —— , G.=% G (0-6in. from top)
It is clear that the sheet will | || | ‘ Con@ (090m " ") L Yys00m. |
not only act as a shear member in 0 10 /5 20 25 30 35 40 45 50

accordance with the theory but

will also assist in carrying longi-
10,000

Distance from top, in.

FIGURE 6.--Comparisons between calculated and experimental results for tension test panel.

tudinal stresses. The following
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assumptions have been used:

A , center

1. For a sheet carrying ten-
sion in addition to shear, it was

8,000
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Colculated, G,=0.2.G

y
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6,000
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effective in tension; i. e., the
sheet up to a line halfway be-

P

B

b. per sq.in.

S

|
T
tween the stringers is added to \
the stringer proper when com- > 4,000 \

puting the cross-sectional area
of the stringer. This assump-

Stres.

s . 2,000
tion is obviously somewhat un-

iR

safe and should be modified when
the stringer stresses are high.

| | ‘J  P=20001b.
| I 1 1 j

N . ) 20
2. For a sheet carrying com-

pression 11 a ddition to the ShG‘dl‘, FIGURE 7.—Comparison between calculated and experimental results for compression test panel.
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The calculations were made for the two different
assumptions of the shear stiffness indicated on the fig-
ure. The second assumption of #,= %@ in the top part
was based on the experimentally observed fact that one
well-developed diagonal-tension fold showed in the top
of the panel on each side, in agreement with the cal-
culation showing that at the maximum load the shear
stress in this region was about six times the buckling
stress.

The second assumption gives perfect agreement be-
tween calculated and test results for the stress in the
central stringer. The agreement is not quite so good
on the edge stringer, the discrepancy occurring chiefly
at the root. Several explanations of the discrepancy
may be offered. An error of several percent may be
caused by an error in the value of I assumed to convert
strain readings to stress readings. The simple theory
used may break down to some extent near the root and,
finally, jig deflection may cause errors. The steel
triangle used on the lower end is not a rigid foundation,
and a slight elastic deformation of this steel triangle
under the edge stringers would relieve the edge stringers
of some load and throw it into the sheet and possibly
into the central stringer. A deformation of about
0.0003 inch would be sufficient to make the calculated
stringer stresses equal at the jig end. Undoubtedly the
assumptions of effective areas, effective shear stiffness,
and jig deflection could be varied within their possible
limits to give a much better agreement with the experi-
mental points.

A similar analysis was made for the panel tested in
compression as described in reference 2. The results
are shown in figure 7. It will be noted that fair agree-
ment with the experimental points is obtained by assum-
ing that the effective shear stiffness is only 0.2 the shear
modulus, in marked contrast to the tension panel. The
curves calculated with G,=@ are also given to show
the extent to which possible variations in @, affect the
stringer stresses.

BEAMS WITH ONE LONGITUDINAL

BEAM OF CONSTANT DEPTH

The simplest case of a beam subjected to shear defor-
mation of the flange is shown in figure 8. For simplicity
of the sketch the flange material on the side not under
consideration is assumed to be concentrated at the shear
web. This assumption does not influence the analysis
when the cover is flat.

For convenience of discussion, the material concen-
trated at the top of the shear web will be referred to as
the “flange” throughout this paper, while the stringer
attached to the cover sheet will be referred to as the

‘“longitudinal.”
Tt 1s again assumed that the longitudinal is cut along

the line of symmetry (fig. 8 (b)). The force acting on

this halved longitudinal is denoted by F,, the force on
the (tension) flange by Fr. The shear force in the web

(b)

FIGURE 8.—Beam with flat cover and one longitudinal.

is denoted by Sy ; the shear force in the cover sheet,
by Sg.

The governing equations are

dx

dFF:SWT—dSC (3a)
dr——G d 3¢)
T— Eb(O'F—U'L) X (-C

with the auxiliary equations

F F 8
G’F‘:Z‘Z; UL:Xi; SW:P; dbC:Ttd.r
The solution of the resulting differential equation is
given in appendix B, Case 3 (a).

COMPARISON BETWEEN TEST AND CALCULATED RESULTS

The test panel that had been used in the previously
described tension test was slightly modified and
attached to two duralumin I-beams to form an open
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(a) Closed side.

(b) Open side.
FIGURE 9.—View of test beam, showing strain gages.
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FIGURE 10.—Set-up for testing beams.
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box beam. TFigure 9 shows photographs of the beam
with the strain gages in place for a test run; figure 10
shows the test set-up. The cross section of this beam
is shown in figure 11.

It should be noted that the cover sheet and the longi-
tudinal were not attached to the bulkheads except at
the root. The flange material of the I-beams (includ-
ing the cover strips riveted to them and the sheet
material effective in tension) was replaced, for the pur-
pose of analysis, by equivalent concentrated flanges
with a centroidal distance of 2.80 inches (effective depth
h of beam, fig. 8 (a)). The caiculated stresses are
therefore valid for the flange centroids. For compari-
son with the measured stresses, the calculated flange
stresses were corrected to the outside fiber stresses

Jx1% dural strip r0.0/6 dural sheet
f 6 * 6 >

Lk

3"-2.02'Ib. Chonne/ -

ourol I-beam bulkhead
Ficurg 11.--Cross section on test beam.

under the assumption that plane cross sections remain
plane for the I-beams with cover strips.

Figure 12 shows the experimental points, the curves
calculated for three different assumptions of the shear
stiffness, and the stresses calculated by the ordinary
bending theory. It can be seen that the experimental
points group fairly well about the curve for G.=% @,
particularly when this curve is corrected for an esti-
mated jig deflection by the formula in appendix B,
case 2. Close to the root, however, discrepancies are
again observed as in the case of the tension panel.
The high flange stress at the station nearest the root
may perhaps be explained by nonlinear stress distri-
bution in the I-beams caused by the method of attaching
them to the jig, which was not designed for this test.
The reduction in shear stiffness of the sheet as compared
with the stiffness developed by the same sheet in the
tension panel can be ascribed to numerous initial
buckles present in the beam but not in the tension
panel.

Inspection of figure 12 shows that very large varia-
tions of shear stiffness have only a relatively small
influence on the bending stresses. This resuit is due
to the fact that, even when the shear stifiness increases
to infinity, the bending stresses never exceed a finite
limiting value. In many actual structures, the shear
stiffness provided is sufficiently large to permit the
limiting stress to be approached within a few percent.
Practically speaking, this fact means that the shear
stiffness need not be very accurately known to obtain
the necessary accuracy in the bending stresses.

BEAM OF VARIABLE DEPTH

In a beam with variable depth, the only change in the
equations is introduced by the fact that the vertical
components of the flange forces balance part of the
applied shear, so that the shear in the web now becomes

Sw—S,— 3 (tan B4 tan ) 5)

where 8 and v are the angles of inclination of the
tension flange and of the compression flange.

The analytical solution for a special case of a beam
with variable depth is given in appendix B as Case 3 (b).

4,000 \ ‘ T
BRERRRRR
\ x o Experimental points (E=/0.4x10°)
\ —— —Colculoted; G.=G
3,600— - G =%G* |
—_— G156
\\ _——- Mc/I
3200 \_ % Omitted for 6, 1o clarify figure;l |
’ R obtain by interg:olatior;
correction for jig deflection
negligible. |
2800 %
X
¢ A
X 2400 \\
o
%) \
5 \
T
2,000 - ;\\ -
D X\
o B N
v —~©\\:-")\ \Q
& 14,600 R N
2} K "~ \
1\“ N
Corrected for N
1200 Jig deflection \o\% *
’ o, \\\ x\
N
800 \8
NS
\

0 6 /2 8 o4 30 36
Distarice from roof, in. .

FicUurE 12.—Comparison between calculated and experimental results for test beam.
CONSTANT-STRESS SOLUTION FOR BEAMS WITH ONE
LONGITUDINAL

The analytical solutions presented thus far, together
with the trial-and-error method, are reasonably ade-
quate for dealing with beams having one longitudinal.
There appears tc be but slight possibility, however, of
extending these solutions to the practical cases of beams
with a number of longitudinals. An approximate
method will now be developed that can be extended to
such beams. The method will first be developed for a
beam with a single longitudinal because comparisons can
be made with the exact solution to gain some idea of the
reliability of the approximate method.
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The approximate method is based on the following
reasoning. It is the aim of the designer to dimension
the structure so that the stress in it is uniform for the
given loading. For several reasons this ideal is never
reached, but there is usually an effort made to taper the
dimensions so as to approach the dimensions of the ideal
design. Now the solution for constant stress along the
span can be very easily obtained. It is possible, there-
fore, to consider the actual condition as a super-
position upon the ideal case, which can be calculated
exactly, of some additional disturbing cases or ‘“faults.”
These faults can be calculated only approximately, but
if they are of minor importance compared with the ideal
case, the resulting error of the total solution will be
small.

The detailed development of the method is as follows:
The fundamental equation

G,
dT:E)(U'F_ op)dx (6)

can be integrated once, if or and ¢z are constant as

assumed, to give
S dy=r— )20

where G, is the shear stiffness averaged over the
distance z = 0 to z = z, and the z origin is taken at the
root. Integrated again to give the total shear force in
the cover sheet

Se= [ ratdz=Ki(op—or) (8)
For example, if G, and ¢ are constant along the span,

GtL?
K=35m
Equation (8) furnishes one relation between oy and .
One more relation is needed to complete the solution.
There are infinitely many conditions from which to
choose this relation. At any station along the span, the
internal bending moment should equal the external
bending moment. The root section has been chosen
because in a number of trials it always proved, by far, to
be the best choice. Equating the internal and external
moment (applied at the root) gives the relation

(5FAF0 + ‘TLALO) ho= Ma.j (9)

(TL)mG (7)

Now remembering that
SC: ULALO

equations (8) and (9) can be solved for the bending
stresses

B MK,
L ol Aredny K Ay Azy)] (102)
M(Ag, + K o)

T ol Arg Ay + K (Arg+ Ary)]

Substituting equations (10a) and (10b) into equation
(7) gives

) 2G. M,

Ebh{AFOJrKl(l + ‘j”@)]
L LO

Equations (10a), (10b), and (10c) constitute the “‘pure
constant-stress solution” for a beam with a single
longitudinal.

The internal bending moment at any station along
the span can now be calculated

M= (‘TFAF + ULAL) h

and, in general, this internal moment will not be equal
to the applied moment M,. This difference constitutes
the first fault of the constant-stress solution and will
be called the “moment fault.”

Tn order to remove this fault, additional (corrective)
bending moments must be added, which are at any
station

(10c)

M =M,—M,,

the prime denoting corrective moments. The stresses
caused by these corrective moments must be computed
and added to the stresses of the pure constant-stress
solution.

The method of computing the stresses caused by the
corrective moments will be approximate and arbitrary
as thus far no exact solutions of this problem have been
found. The following method was chosen because the
underlying assumption is the most obvious one and
because the method is very convenient, eliminating the
necessity of computing the internal moments, the cor-
rective moments, and the corrective stresses separately.

From equations (10a) and (10b) it follows that the

ratio
I j)

<UL,>0_’O—( I+ K.
The assumption is now made that this ratio remains con-
stant (r=r,) along the span and that it holds not only
for the stresses caused by the “ideal” moments but also
for the stresses caused by the corrective moments.
Under this assumption, the direct stresses at any station
are given by

(11)

M,

op= (12a)
o %@7{5, (12h)
hAL( 1+ ;1: )

From these stresses the shear stresses are obtained by
using the fundamental relation (2) and integrating {rom
the root toward the tip

T——‘f _B ((71, O'L)dx

The moment fault has now been removed; that is, the
internal moments equal the applied moments when the
stresses as given by equations (12a) and (12b) exist in

(12¢)



12

The increments of corrective shear force are obtained
by using equations (13), (14), and (15). After the
integration of (15) in from the tip to obtain the correc-
tive shear force S¢/, the correction to the flange stress
is calculated by the first expression of (16); the correc-

FiaUre 17.- Notation used for beams with orthotropic cover plates.

tion to the shear stress is calculated by the last ex-
pression of (16).

The calculation of the correction to the stress o is
somewhat more complicated because it varies along
the chord. The total force on all longitudinals, using
equation (17), is given by
(19)

AFL:J-D J%E(Z?/: A OorL sinh Kgb
0

<iL
Kb
where ¢, denotes the stress at the center line of the
beam obtained from equation (17) by setting y=0.
Tn accordance with (16), only a part of the corrective
shear force is applied so that the corrected total force
on the longitudinals is

FLCOTT:FVL_OlSC, (20\)

Assume now that the corrected stresses in the longi-
tudinals are distributed chordwise according to the law

Teorr= 0Ly, COSh Yy @21
The unknown 17 can be found from the equation

tanh @*‘ ‘F—Lcorr
Yo B ALUFaa:rr

which is based on the premise that

TLoorr— TFoory

for y=>b. After ¥ has been found, the corrected stress
at the center line is found from

J— ve
OCLpgrr = O gyy, SCCIL YD

and equation (21) can then be used to calculate the
stresses at intermediate values of . The right-hand
side of equation (22) is the ratio of the average stress
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in the longitudinals to the stress in the flange. In
general, this ratio will be less than unity; however,
figure 16 shows that for a beam with a single longi-
tudinal the stress in the longitudinal may be larger
than the stress in the flange over a part of the span, and
similarly the right-hand side of equation (22) some-
times may exceed unity. In such a case, equations (21)
and (22) may be replaced by

Teorr=0cLgyy,(2—cosh Yy) (21a)
,_ sinh ¥ »
- Yb _ LCUTT (223)

(2—cosh Yb) Asor,,,

After Y has been found, the corrected stress at the
center line is found from

oer o OF corr B
ot (2—cosh Yb)

and equation (21a) can then be used to calculate the
stresses at intermediate values of .

" The solution of equations (22) and (22a) can be
effected by inspection of tables. Ior practical pur-
poses it should be sufficient to use the curve given on
figure 18.

As examples, beams A and B were analyzed under
the assumption that longitudinals with the total cross-
sectional area A, are distributed uniformly along the
chord. The results are shown in figures 19 and 20.
1t will be seen that the stress at the center line of the
heam is very low. If all longitudinals are of the same
cross section, they must be designed to the stress in the
first longitudinal adjacent to the flange. Consequently,
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| ~
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0 .2 4 .6 .8 1.0 1.2
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Ratio Ao Or

FiGURE 18.—Graph for auxiliary parameter Yb.

the longitudinals near the center line are very in-
effectively used. In this connection, attention might
be called to the fact that the longitudinals need not be
of the same cross-sectional area along the chord. The
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assumption of A, being uniformly distributed may be
fulfilled, for instance, by using longitudinals of large
cross-sectional area but widely spaced near the flange
and longitudinals of small cross-sectional area but
closely spaced near the center line. Although such an
arrangement would not increase the over-all structural
efficiency, it might under certain conditions offer
manufacturing advantages.

MECHANICAL ANALYZER

The constant-stress solution is always approximate.
When the moment and shear corrections are large,
doubts may arise as to whether the solution is suffi-
ciently accurate. It might be advantageous to con-
struct a mechanical analyzer to deal with such cases.
One possibility for such an analyzer would be actually
to build units representing the mechanical model
sketched in figure 1 (b). The springs might be canti-
lever springs, so that their stiffnesses could be varied by
changing their lengths. Xach unit would represent
one bay of the trial-and-error method of solution and
would have one spring to represent the stringer stiffness
and one spring to represent the shear stiffness of the
sheet attached to one side of the stiffener.

The chief difficulty in the design of such an analyzer
would probably be in reducing the friction between the
units and the guides necessary to aline them. A fairly
large number of units would be necessary to represent
a wing cover, which would mean a fairly expensive
instrument. This disadvantage is counterbalanced by

T
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FI1GURE 19.—Stresses in beam 1 with A, uniformly distributed along chord.

the possibility that the instrument would offer in a
comparatively short time quite an exact analysis,
including the effects of bulkheads and of yielding
supports. The main errors in this solution would be
those caused by the finite length of bays.

13
CONCLUSION

The art of stress-analyzing sheil structures is of recent
origin, and any methods of analysis proposed must go
through a process of trial and development.

Development of the method of shear-deformation
analysis is desirable in several directions; e. g., exact
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FIGURE 20.—Stresses in beam 3 with .1, uniformly distributed along chord.

solutions should be found to replace the constant-stress
solution and methods should be devised to calculate
the influence of bulkheads.

Rough approximate calculations on bulkhead eflect
can be made by assuming that all the longitudinais
are relocated at the center line of the beam. For
beams with a single longitudinal, the effect of bulk-
heads can be calculated. A series of systematic com-
parisons between the extended solution of Younger and
Case 3 («) of appendix B indicates that for a certain
range the single-longitudinal assumption may yield
aceeptable approximations when used i conjunetion
with suitable correction factors. The comparisons
are not given, however, because they might be mis-
leading in view of the shear fault of Younger’s solution.
Calculations made thus far indicate that in practical
cases the effect of the bulkheads is very small.

It should be emphasized that analyzing shell struc-
tures is an art rather than a science. The arithmetic
of analyzing highly redundant structures can be re-
duced to manageable proportions only by making
assumptions that will be valid only within a certain
range. This fact leads to the unfortunate, but inevi-
table, conclusion that the analysis of such structures
cannot be made entirely by handbook and formula but
must be guided by engineering judgment.

LANGLEY MEMORIAL ABRONAUTICAL LABORATORY,
NarioNnan Apvisory COMMITTEE FOR AERONATUTICS,
LiancLry Frewop, Va., June 3, 1937.



APPENDIX A

LIST OF SYMBOLS Subscripts have the following significance:

A, cross-sectional area (sq. in.).
E, Young’s modulus (Ib. per sq. in.).

A, loaded stringer A shown in figures 1, 2, 21, and 22.
B, unloaded stringer B shown in figures 1, 2, 21, and 22.

F, internal force (ib.).
@, shear modulus (Ib. per sq. in.).
K, constant.
L, length of panel or beam (in.).
M, bending moment (in.-1b.).
P, external load (Ib.).
S, shear force (1b.).
b, spacing of stringers (in.). (See figs. 3 and 4.)
b, half width of beam (in.). (See fig. 8.)
¢, camber of cover (in.).
4, depth of beam (in.).
t, thickness of cover sheet (in.).
u, displacement of point (in.). (See fig. 4.)
w, running load (Ib. per in.).
v, shear strain.
o, direct (normal) stress (Ib. per sq. in.).
7, shear stress (Ib. per sq. in.).
14

(', cover sheet.

F, flange of beam.

L, longitudinal of beam.
W, shear web.

a, applied shears and bending moments.
e, effective.

0, root section.

¢, compression.

¢, tension.

1nt, internal.

corr, corrected.

S, static equilibrium.

E, elastic equilibrium.
CI, center line.



APPENDIX B

SOLUTIONS OF DIFFERENTIAL EQUATIONS FOR SYMMETRICAL STRUCTURES OF CONSTANT
CROSS SECTION

SIGN CONVENTIONS

Forces and stresses in stringers are positive when
tensile. Shear forces and stresses in the sheet are posi-
tive when caused by positive stresses and strains in the
loaded stringer A in the case of axially loaded panels
or in the flange F in the case of beams.

CASE I—THREE-STRINGER PANEL ON RIGID FOUNDATION WITH
AXIAL LOAD

The two possible cases shown in figures 21(a) and
21(b) can be mathematically treated by taking one-
hal{ the panel, as shown in figure 21(c), which also

i L PP 74 2 y /
X
L
A B
VAR
— & —>)
7 \ 4 Y Py
(a) (b) ()

FIGTURE 21.—Axially loaded panels.

gives the notation to be used. The derivation of the
fundamental equations is given in the main body of
this paper. Slightly modified for the purpose of deriv-
ing the basic differential equation, these equations are

U,i/ :41?; ﬂlld O'B/ —_ jit[; (}3_‘})
’ Ge 3 )
ZE(UAA;*UB) (B-2)

where the primes denote differentiation with respect to ..
Differentiating equation (B-2) again and substituting
into the result from equation (B-1),

ol vas f%):o (B-3)
The boundary conditions are
at z=0, r=0
P ‘ (B—4)
at r=1L, Uf“»;;i: and 03:0[
The result is
P (G, sinhKz
" A, EbK cosh KL
"-“:(AuJl[;A},,,)<1 —iﬁiiﬁ f{{z (B-5)

P,

04— " 4 0
A 111; Aq_‘g B

where

L Gt 1 1
K=pl AB>

In reference 2 the formula

4

, 25 Gt
=9 AhE

9 . LT L e 1 y s/
fa:f[COSh pr—tanh pL sinh px n 1]
i

where

is given for the special case where the area of the edge
stiffener is twice the area of the central stiffener. Tak-
ing account of the differences in notation and coordinate
systems used, this result agrees with the general formula
given under (B-5).

It should be noted that the final formulas (B-5) be-
come invalid when either f or G, approaches zero be-
cause in these cases the equation (B-3) becomes invalid.
The solution for such cases is obtained by using the
fundamental equations (B—1) and (B-2) directly.

An analogous procedure must be used for Cases 2
and 3.

CASE 2—THREE-STRINGER PANEL STRAINED BY MOTION OF
SUPPORTS

The differential equation for the case of figure 22 is

A A

~ — = e ,‘,

(@) (b) (c)

FIGURE 22--Panels strained by motion of supports.

the same as for Case 1. The boundary conditions are

now:
at =0, 0,=0 and o5=0
5, (B-7)
at .’IT:I/ 5 T:B Ge:TO
The result is
~_cosh Ku
T T0cosh KL
t sinh Kz (B-8)

4T T KA, cosh KL

.t sinh Ko
T8 TR A, cosh KL

where A has the same meaning as in (B-6).
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CASE 3—CANTILEVER BEAM WITH ONE STRINGER

(a) Uniform depth, concentrated load at tip.
(b) Depth decreasing lineally to zero, uniformly
tributed load.

dis-

Figure 8 shows the notation used for both cases.
(Note that the x origin is at the tip.) The funda-
mental equations are for Case 3 (a)

O’F,AI": ;/f —rt
O'L/A/lL:Tt (B_g)
T,:_i’z(UF_UL) )
which gives the differential equation
et —0  (B-10
el At AFEbh (B-10)
The boundary conditions are
at =0, 0,=0, and ¢,=0 |
t(B—] 1)
at r=L, 7=0 |
The result 1s
P ( 1— cosh Kr
th<1 _I_A],>\ cosh KL
sinh Kur (B-12)

P
LT (A Ay 7K cosh KL

M)
AN,

where K has again the same meaning as in (B-6) with
Ap and Ay substituted for A, and A,.

In Case 3 (b), wL/2 is substituted for P; A in this
case 1s the depth at the root.

S

S el

\/‘

Fraure 23.—Cantilever beam with concentrated load not at tip.

The case of a beam loaded by a concentrated load
not at the tip is a simple problem in indeterminate
structures. The beam is cut just outboard of the load
(fig. 23) and the stresses in the cantilever part are cal-
culated (Case 3 (2)). From these stressss, the distortion
ol the beam section at the cut; i. e., the relative dis-

placement of the tips of the flange /' and the longi-
tudinal L, can be calculated. A system of forces X
is then applied to equalize the distortion of the can-
tilever tip and of the inboard end of the “overhang,”
utilizing the formulas of Case 2

CASE 4—CANTILEVER BEAM WITH ORTHOTROPIC COVER PLATE

Younger’s solution for a beam of constant section.—
The beam and the coordinate system used are shown in
figure 17. It should be noted that the x direction is
opposite to that used in Cases 3 and /.

Under the assumptions that the transverse stresses
and strains are negligible (Poisson’s ratio equal to zero),
and that @, is independent of I, the differential equa-
tion of the cover is

I o*u
_7/’+(7 A

where 1 is the displacement of any point on the cover in
the = direction.
The boundary conditions are

=0 (B-13)

at r=0, wu=0 and a—u:() ‘
oy
ou
Ik T (B-14)
ou
U=0 5, =0 j

This equation was established by Younger (reference
4, pp. 36-47). Xor the solution he assumed that the
external bending moment (on the whole beam) is
given by

M=M, cos ‘?L (B-15)

and obtained for the longitudinal stress in the cover

M, cosh - ZKL cos L
o—
?h(Ap cosh ZKL_!_AL 2KL sinh }T{bL>
and for the shear stress (B-16)
b Y g, T
MG i ﬁ Soor
Ao ) o
hE 4K2tL b
HKAF (*OQh ‘)KL—I———' )jII{I
where K is defined by
Kzz% (B-17)

Extension of Younger’s solution.— Younger’s solution
can be somewhat extended. The external bending
moment can be represented by a superposition of
several terms:

M=2M, cos )L+J[3 cos ‘>L L4 Meos m_"

mm.r
oL

where the m's are odd integers.

4 .0 M, cos (B-18)
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The values M, . . M,, are chosen so that the sum of
the terms equals the given external bending moment at
m points other than the tip, where it is assumed that
M=0. In order to make comparisons with Case 3, the
bending moment caused by a tip load was expressed by

M—PL <O.821 cos 57+0.101 cos g,l[r

. - Swx 7mr
+0.045 cos —I—O 033 cos 57,
The stresses corresponding to the mth term are given

by

(B-19)

Y mmx
‘["L C()gi] :—z-ﬁ CO TZI—
g -
m=— m 7'rb £ 1,} -«KL m 7|'b
2h< Ay cosh SREY D w00 SRT (B-
W AT G AT 16a)
M, G. sinh ‘7KL sin 57~
Tm= / -
hE (9 KA, cosh 7)"[2 +AL4K L. :%r]b

The assumptions of Poisson’s ratio being zero and G
being independent of [ are, strietly speaking, incom-
patible. The physical picture conforming to these
assumptions is not a plate but a system of stringers
carrying only longitudinal stresses tied together by a
sheet carrying only shear stresses. This picture is
realized very nearly in practice by a skin-stringer cover,
the only difference being that the total cross-sectional
area of the stringers is not necessarily equal to the area
of the sheet, as in the case of the plain cover sheet. All
the equations written for the plain cover sheet apply,
therefore, to the skin-stringer cover il only (B-17) is

replaced by

K :RC

(B-17a)
where F is the ratio of sheet area to area of longi-
tudinals.

Constant-stress solution—The coordinate system is
that shown in figure 17. Under the assumption that

c=constant for each longitudinal, the fundamental
relation

dr Ao .
dr Ay (B-20)

can be integrated once to give
Ao — .
— R 7()1 \
. ]<Ayf Gdr [fm/Gf (B-21)

where G, is the shear stiffness aver aged over the d
=0 to z=ux. Integrating again

S 7 e Aes
ASC-—fU Txt(Z.L—.f; EAZ/GTth

listance

In any given case this integration can be performed
and the result is

Ao

Se= Ky~ (B—22
Se=Hoy, (B-22)
where
K= | "G
;7.10 Yok ax
Now
§ A
b(;:f de
(see fig. 24) or
dSe A, . ~
g —93)
dy b (B-23)
r\\\
T
|
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FIGURE 24.—Free-hody diagram of cover plate.
Differentiating (B-22) and equating to (B-23)
dzo' AL
wo_ Arn 94
e JbKZ 0 (B-24)
assuming that K, is independent of .
The boundary conditions are
(1) at y=0, 7=0 for any z. Therefore ;%:()
(2) at any desired reference station R, the internal
moment equals the external moment M.
The solution is
e M 'b-h Ky (B-25)
i ( Ay cosh K3b+bK sinh K;b)
G, ,
7= UFKP,.I} tanh Ky (B-26)
where Kj is defined by
L i 14 o
Kp=t= £ (B-27)

K,
?;f I(’t(h

It may be noted that if &, and t are not varied along
the span, the constant Kj is identical with the corre-
sponding constant of Younger’s solution except for a
10 percent difference in the numerical factor, namely,
+'2 against 7/2



APPENDIX C

ANALYSIS OF BEAM B

The dimensions and the loading of the beam are
shown in table 1.

ORDINARY BENDING THEORY

M 2800000
LT O (A AL 24(1.875+1.875)
31,100 Ib. per sq. in.

CONSTANT-STRESS SOLUTION

Since @, is assumed constant along the span, G,=0@,
and, from equation (7),

z@,

) b
From equation (8)

So= . (o) Gpto 1= )i
:(UF—UL)ptOf <1 >dx

0. 2><0 040 28“
:(0-1,.70‘11 o {)80 d.]

=4.35(0p— O'L)
K1:4:.35

Te= (O'F_

From equation (10a)

B 2,800,000 <4.35 B
TLT94[1.87h X 1.875+4.35(1.875-+1.875)]
25

~

,550 1b. per sq. 1n.
From equation (10b)

C2,800,000(1.875+4.35)
T DAL 875 % 1.875 1 4.35(1.875 +1.875)]
=36,500 1b. per sq. in.
18

Substituting in equation (7) for the shear stress at
the tip
280<0.2

———==25,560 1b. per sq. in.

Tmer = (36,500—25,550) =5 4

The calculation of the shear correction is shown in
table 111.

TRIAL-AND-ERROR SOLUTION
Take Az=40 in.

Swir  wrLAr wL _ 71.4X280<40

i _welle_ul,, S5 —16,670 b,
AF»=16,670—AS,
AT= :GAbr (op— );9% (or—01)=0.333 (05— 07)

A typical eycle of the calculation is shown in table 1V.
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TasLe I.—ANALYSIS OF TENSION PANEL WITH SHEAR DEFORMATION

19

L=36 S YA
A4=0.403 Ar= 6 Fp=2ASc LG D (e o
A0 2% F:=2,)400——2‘,AS{~ a—B=f—§= Py Ar=—pu (6a—ap)=0.52 (61—ap)
t=0.016 Fa  Fa Ap 0.220 T=2AT
b=4.60 G'.4=_1—A=m G.JE=0.4 ASc=7tAr=0.096 7
By trial-and-error method By formula !
| S
Station
ASce Fa4 a4 Fg aB g4—0RB AT T ASc o4 B T
(b)) (Ib.) (Ib./sq. in.) (b.) (Ib./sq. in.) (Ib./sq.in.) | (Ib./sq.in.) (Ib./sq. in.) (b.) (Ib./sq.in.) | (b./sq.in.) (li:./sq. in.)

5,230

[ B, 1,604 | 3,618 362 189 | .o |_ 3,968 3,630 0
! E— — -
1 Appendix B, Case 1.
TasLe II.—CHARACTERISTICS OF BEAMS
‘The beams are assumed to be half beams as shown in fig. 8 (a).
All beams:
h=24 in. at root. b=241in.
h=0 at tip. L=280in.
G./E=0.2. W=7141b./in.
T B 1
Ap=.ir t
| (sq. in.) (in.)
Beam | _ ¢
Root Tip Root Tip |
1.875 1.875 0.040 0.040 0.
1.875 0 . 040 . 000 0.
1. 880 . 470 . 040 .010 0.
TasrLe 11— CALCULATION OF SHEAR-FAULT CORRECTION FOR BEKAM B
S R . . SR N . . — ‘
Sc ‘
Ar=40 Com & o' =05 o, =25500+0
Fr=apAr=36,5001r T_z")vd(’oz ‘ 1:5'1" ’“Z,'_O ,‘ACC’
< AT AS8cp=TIAL f=—0.55 A \
=Syt —A cr=T oL .
AScs=Sw —al ASc/=AScs—AScr . —36,500-F o’ Teorr=T+7"
corr
1 [ B
) \ | !
Station from Ap=Ap| b ot swit | Feo | AF | aScs (bsq. | ASer | aSe | Se | )] 7cq (154'/;@ (ff?l?; v (le/’Q(l e ‘
Elor?g (sq.in.) | {in.) (in.) h (b.) (Ib.) | (b.) in) (Ib.) (Ib.) (1b.) in.) in.) in.) in.) in) iny |

TasLe IV.-—TRIAL-AND-ERROR SOLUTION FOR BEAM B

' I i
Station | £ from | A=Ay Az ASe Iy, } oL AFp Fr or ; op-—or | Ar | T AS¢ |
lroot (in.) | (sq. in.} (Ib.) (Ib.) t(lb./sq.in.) ('h.) b.} (Ib./sq.in.) | (Ib./sq.in.) | db./sq.in.) | (Ib./sq.in.) (Ih.) i
i
0. . .- 280
260
) 240
220 :
2. 200 !
180 !
3. . 160 i
140
4o . 120
100 |
5. 80 |
60 !
[ 48 | i
2 i
VP, ¢ 1875 .. 46, 080 24,560 .o _____. 70, 610 37,640 ‘ 13, 080 4,360 || l. |
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Positive directions of axes and angles (forces and moments) are shown by arrows
Axis Moment about axis Angle Velocities
Force
{parallel . " ) Linear
Designation | 5y2- | 10 8i9) | pegignation  Sym- | Positive | Designa- | Sym- ”ﬁ!’;’{;&g Angular
. axis
Longitudinal _ __. . X X Rolling_.___ L Y——sZ Roll__.__ ¢ u P
Lateral . _________ Y Y Pitching. .| M Z—s X Pitch._._i 6 v q
Normal ______.__ Z Z Yawing.._.. N X—Y Yaw..... ¥ w r
Absolute coefficients of moment Angle of set of control surface (relative to neutral
o—L o -M O — N position), 8. (Indicate surface by proper subscript.)
" gbS ™ geS = gbS
{rolling) (pitching) (yawing)
4. PROPELLER SYMBOLS
D, Diameter . P
o Geometric piteh P, Power, absolute coefficient Si~/m_3§5
p/D, Pitch ratio 3 Lo 5[pVe
V7, Tnflow velocity C, Spee.d power coefficient VFm
Vs,  Slipstream velocity m Eﬂimencjy
T n, Revolutions per second, r.p.s.
T, Thrust, absolute coefficient Cr=—75 . ) 174
P"Q 3, Effective helix angle———tan"(%
Q, Torque, absolute coefficient ngpnz T
5. NUMERICAL RELATIONS
1 hp.=76.04 kg-m/s=>550 ft-1b./sec. 1 1b.=0.4536 kg.
1 metric horsepower=1.0132 hp. 1 kg=2.2046 1b.
1 m.p.h.=0.4470 m.p.s. 1 mi.=1,609.35 m=>5,280 ft.

1 m.p.s.==2.2369 m.p.h. 1 m=3.2808 ft.



